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Abstract. For linear wave propagation one is often interested more in the local distribution 
of the wavevectors than in the global spectral distribution (i.e. the Fourier transform). A 
function that may act as such a local frequency spectrum i p  the real-valued Wigner 
distribution function. In this paper this concept of local frequency spectra is generalised 
to non-linear wave propagation which is governed by a class of non-linear wave equations. 
This class includes such well known equations as the non-linear Schrodinger equation, the 
Korteweg-de Vries equation and the Burgers equation. Furthermore the derivation of a 
transport equation for these local frequency spectra is given on the basis of the dispersion 
relation for the linearised wave equation. By taking local moments of this transport equation 
with respect to the frequency variable, an infinite hierarchy of so-called balance equations 
is constructed. For the non-linear Schrodinger equation the successive conservation laws 
(in principle, infinitely many) have been calculated straightforwardly from these balance 
equations. 

1. Introduction 

As is well known in the theory of linear wave equations it is sometimes convenient to 
describe a solution U (  r, t )  not in the space domain, but in the spatial frequency domain 
by means of its spatial frequency spectrum, i.e. the Fourier transform f (p ,  t )  of the 
function u ( r ,  t ) ,  i.e. defined by 

f ( p ,  t )  = ( 2 ~ ) - ~ ’ ~  r+x U (  r, t )  exp( -ip 9 r)  dr. (1) 

This frequency spectrum describes the global spectral density of the wavevectors p of 
the individual plane wavvs composing u ( r ,  t )  according to the Fourier synthesis. (Of 
course the temporal frequency description is also used very often. In the present paper, 
however, we are interested mainly in the spatial frequency description.) It is, however, 
sometimes more interesting to study linear wave propagation by means of a local 
spectral distribution of these wavevectors (Bastiaans 1978). A function that may act 
as such a local frequency spectrum is the real-valued Wigner distribution function 
W (  r, p ,  t )  (Wigner 1932, Mori et a1 1962) which is defined by 

+I 

W (  r, p ,  t )  = T - ~  p( r, r’, t )  exp( -2ip. r ’ )  dr’ 

where the function p ( r ,  r ’ ,  1 )  is given by 

p ( r ,  r ’ ,  t )  = u(r1,  t ) u * ( r , ,  t )  (3) 
with the averaged coordinate r = 4(r, + r z )  and the separation coordinate r’ = ;( r,  - rz) .  
The asterisk denotes complex conjugation. The normalisation in (2) has been chosen 
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so as to have 
+X 

W (  r, p ,  t )  exp( +2ip.  r ' )  d p  

and  
+ X  

G ( p ,  t ) G * ( p ,  t ) = l f i ( p ,  ? ) I 2 =  
For r' = 0 equation (4) becomes 

(4) 

Hence u(r ,  t )  can be reconstructed from W ( r ,  p ,  t ) ,  however, up  to a constant phase 
factor. The quantity (6) represents the spatial energy density of the function u ( r ,  t ) .  
Further properties of the Wigner distribution function can be found elsewhere (Claasen 
and Mecklenbrauker 1980a, b).  

An additional advantage of the Wigner distribution function is that it can be applied 
not only to deterministic wave phenomena (Bastiaans 1978) but also to stochastic 
signals (Bastiaans 1981). In  that case the function p ( r ,  r', t )  in (2) can be interpreted 
as the two-point correlation function, i.e. 

p ( r ,  r' ,  0 = ( u ( r , ,  t ) u * ( r * ,  t ) )  (7) 

where the angle brackets denote the ensemble average. Thus it becomes possible to 
use the Wigner distribution function to describe, for example, partially coherent light 
(Bastiaans 1981). 

In  both cases, the deterministic as well as the stochastic (linear) wave propagation 
involves a corresponding propagation of the above-described associated local frequency 
spectrum which is governed by some transport equation (Bastiaans 1979a, b).  For 
waves that propagate in an  inhomogeneous (in space and/or  time) medium and that 
satisfy the geometrical-optical restrictions this transport equation reduces to a partial 
differential equation of first order of Liouville type. The equations for the characteristics 
of this equation of Liouville type are Hamiltonian in form, with the temporal frequency 
playing the role of Hamiltonian. Furthermore these characteristics are identical with 
the ray paths that follow from the eikonal equation (Bremmer 1973, Bastiaans 1979a, b).  
It should be noted that, if the medium is indeed inhomogeneous in time also, the 
temporal frequency may no longer be considered as a given parameter. In that case 
the Wigner distribution function should represent not only the local spatial spectrum 
(related to the spatial inhomogeneity) but also the momentary temporal spectrum 
(related to the temporal inhomogeneity). 

Until now the concept of local frequency spectra has been applied mainly to linear 
waves. Bastiaans (1978, 1979a, b, 1980) and  Claasen and  Mecklenbrauker (1980a, b, c )  
studied the Wigner distribution function as applied to deterministic, completely coher- 
ent, completely incoherent as well as partially coherent optical signals. Furthermore 
the relevance of the Wigner distribution function as a tool for time-frequency signal 
analysis is beyond doubt (Claasen and Mecklenbrauker 1980a, b).  Also the relation 
of the Wigner distribution function to other time (place)-frequency signal representa- 
tions, like Gabor's signal expansion, has been discussed (Claasen and  Mecklenbrauker 
1980c, Bastiaans 1982). The application of the Wigner distribution function to non- 
linear wave phenomena has had very little attention until now although it seems 
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relevant. One can think in this connection of the suggestion of Hasegawa and Kodama 
(1981) to use non-linear effects in monomode fibres to enhance the bit rate. The optical 
solitons that would propagate in such a fibre are governed by the non-linear Schrodinger 
equation that is also considered in the present paper. Therefore it is the aim of the 
present paper to generalise this concept of local frequency spectra to a class of 
non-linear wave equations that are characterised by the dispersion relations of their 
associated linearised versions. Furthermore the transport equation for the Wigner 
distribution function as applied to these non-linear wave equations is constructed and 
worked out in detail for some well known members of this class, namely the non-linear 
Schrodinger equation, the Korteweg-de Vries equation, the modified Korteweg-de 
Vries equation and the Burgers equation. By taking local moments of these transport 
equations in seven-dimensional ( r ,  p, t )  space with respect to the spatial frequency 
variable, an infinite hierarchy of equations in four-dimensional ( r ,  t )  space will be 
derived. For the non-linear Schrodinger equation it will turn out to be possible to 
construct from this infinite hierarchy the successive conservation laws. Finally some 
other promising perspectives of the application of the Wigner distribution function to 
non-linear wave phenomena are discussed. 

2. Transport equations 

As has been mentioned in the introduction, linear wave propagation involves a corre- 
sponding propagation of the associated distribution function (2). The equation for 
the latter, a transport equation, must be derived from the underlying model equation. 
In many cases (and always in quantum mechanics) this equation can be represented by 

au 
-= a t  - F(  r ,  $) 

where F is some explicit function of the spatial coordinates contained in r and of the 
partial derivatives contained in the gradient operator. The corresponding transport 
equation for W can now be obtained by multiplying the equation (8) for u ( r l ,  t )  by 
u * ( r z ,  t )  and adding the complex-conjugate expression with rl and r2 interchanged. 
The result is 

( 9 )  

Both sides of this expression are now multiplied by 7rTT-3 exp( -2ip r')  and the functions 
F and F* are expanded in Taylor series around r and +alar. Finally the resulting 
equation is integrated over the complete three-dimensional r' space. Thus the transport 
equation for W is found to be given by 

a t  

If the wave phenomenon is governed by some dispersion relation w = w (  r, p )  in 
which the r dependence can take account of a possible spatial inhomogeneity of the 
medium (at least in a W K B  approximation), the function F is given by 

F r , -  = i w  r,-i- . ( aar) ( Jar) 
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The resulting transport equation (10) for W now becomes 

-21m w r+- - ,p- - -  w "1 aw 
-- a t  [ ( 1:p 2 a r  

or, in symbolic form, 

i ' P  

where it has been assumed that the dispersion operator can be split into a real and an 
imaginary part according to 

w(r,p) = w,(*,p)+iw,(r,p). (14) 

The above-described theory for linear wave propagation can be generalised to a 
special class of non-linear wave phenomena for which the model equation (8) is 
modified in the sense that the function F now may also depend upon the wavefield 
itself according to 

F r,-, u(r, t )  = G r,- +L[u(r ,  t ) ]  ( d t  ) ( aar) 
where L is some operator acting on u(r, t ) .  For a wave equation of which the linearised 
version can be represented by some dispersion relation Cl( r, p )  this generalisation 
means that 

w(r, p ,  U(*, t ) )  = Wr,  p )  -iL[u(r, t ) l .  (16) 
The class of equations that is represented by (8) and (15) contains some of the 

best known non-linear wave equations such as the non-linear Schrodinger equation, 
the (modified) Korteweg-de Vries equation and the Burgers equation. However, 
non-evolution equations such as the sine-Gordon equation do not belong to the class 
of equations that is represented by (8) and (15).  As will be seen in 9 2.2 this class of 
equations also contains equations that do not possess soliton solutions. 

To illustrate the generalisation we consider some of the well known non-linear 
wave equations in one spatial dimension. 

2.1. The non-linear Schrodinger equation 

at 

The transport equation for W is now constructed by means of (13 1 and is thus found 
to be given by 
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where 

It should be noted that in this manner the transport equation for W can be 
constructed not only for the Schrodinger equation with the above-given cubic non- 
linearity, but also for other types of non-linearities. For example, the relaxation of 
the quasi-neutrality assumption in the description of non-linear Langmuir waves and 
ion-acoustic waves in a plasma and the non-linear coupling between them (Nicholson 
1983) is shown to lead to the following expression for the non-linearity L in (17 ) :  

where A. is normalised to +i. If all the coefficients A, are assumed to be zero (except 
A. = +i) we do have exact neutrality on the slow timescale associated with the slowly 
varying amplitude of the Langmuir wave. The terms in (20) with the coefficients A, 
( n  = 1 ,2 ,3 , .  . .) take account of the deviation from exact neutrality on this slow 
timescale. 

Another generalised non-linear potential one can look at is the following one: 

This is identical with 
d 2 M ~  M a 2 M - 2 n  

(22) -- - c P . ~ ( I U l 2 ) .  
axZM 

For M = 1 the transport equation (18)  for W together with (22) is a strong reminder 
of the Vlasov-Poisson system of equations in plasma physics (Nicholson 1983). 

It is of course possible to combine (20) and (22) into one generalised non-linear 
potential that is given by 

where 

U, = A n - M  

= P M  - n  

for n = M , l + M ,  . . . ,  N + M  

for n = 0 , 1 , .  . . , M - 1  and vM = + i .  

The impact of the above generalised non-linear potential with respect to the 
instability of the modulation of a uniform wavetrain of which the envelope U is assumed 
to be governed by the non-linear Schrodinger equation (the Benjamin-Feir instability 
(Benjamin and Feir 1967)) can be studied on the basis of the transport equation for 
W in the same manner as Landau (1946) treated the similar-looking Vlasov equation 
of plasma physics in order to obtain the Landau damping of Langmuir oscillations. 
Also the long-time behaviour of this modulational instability and its connection with 
the Fermi-Pasta-Ulam recurrence phenomenon (Janssen 198 1 )  can be investigated by 
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means of the transport equation for W. The details of these investigations will be 
presented elsewhere. 

Finally it is noted that transport equations for W can, in the previously described 
manner, also be constructed for the whole family of generalisations of the non-linear 
Schrodinger equation that has already been studied in the literature; see for example 
Dodd and Fordy (1984). For such a generalised non-linear Schrodinger equation the 
corresponding transport equation for W does have a Hamiltonian structure. This falls 
out naturally in terms of the Moyal bracket that is defined by 

[ a , b I a =  1 ?(----- ana a"b a"b ana 
n s ~  n .  ax" ap" ax" ap" 

where a = a(x,  p )  and b = b(x, p).  With this Moyal bracket the transport equation for 
W for the generalised non-linear Schrodinger equation 

iu,+uu, ,+ V(x)u = O  (26) 

can be written as follows: 

D W  a W  - 
Dt a t  

+ [ W, f p 2  - f ~ ( x ) ] i / 2  -[ W, -+p2+$v(x)] i /2  

aw 
a t  

-- - +[ w , p 2 -  V(X)]l = o  

where 

The Moyal bracket then gives the sine term in (18). This point has been discussed by 
Adler (1979) and Lebedev and Manin (1979). Lebedev and Manin (1979) also discussed 
the quasi-classical limit ( 8  -+ 0), where the Moyal bracket becomes the canonical Poisson 
bracket. 

2.2. The generalised Korteweg-de Vries equation 

q = 0 , 1 , 2 ,  . . .  
a t  ax3 

For q = 0 we thus have the Korteweg-de Vries equation and for q = 1 
modified Korteweg-de Vries equation. From the dispersion relation 

we have the 
we find the 
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following transport equation for W: 

where for real-valued U 

2.3. The Burgers equation 

a t  

a' 
ax 

F = - T + L [ u ]  

au 
L [ u ] = -  

ax 

For the transport equation we now find 

aw 1 a2w 
a t  2 ax 2ap ax" - + 2 p 2 w - - ~ + 2 c o s  

where again for real-valued U 

= x 

3285 

= o  ( 3 3 )  

(34) 

In the same manner transport equations for local frequency spectra for other kinds 
of non-linear wave equations also in more than one spatial dimension (e.g. the 
Kadomtsev-Petviashvili equation (Kadomtsev and Petviashvili 1970) can be con- 
structed. 

3. Hierarchy of balance equations 

By means of a procedure that is reminiscent of the derivation of an infinite hierarchy 
of so-called fluid equations from the Vlasov equation in plasma physics, it is possible 
to obtain a similar infinite hierarchy of equations in four-dimensional ( r ,  t )  space from 
the transport equation for the local frequency spectrum W. This procedure consists 
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of taking local moments of the transport equation with respect to the spatial frequency 
variable p .  For simplicity we shall restrict ourselves to one spatial dimension; the 
generalisation to three spatial dimensions is straightforward. 

Expression (16) is now rewritten as follows: 

w =wr+iwi=Rr(x ,p)+  Li[u(x, t)]+i{R,(x,p)- L,[u(x, t ) ] )  (35)  

where it has been assumed that the dispersion operator R and the non-linearity operator 
L can be split into a real and an imaginary part according to 

R =Rr+ iRi  L =  Lr+iLi.  (36) 

Furthermore it is assumed that the medium is spatially homogeneous, i.e. R does not 
depend on x, only on the spatial frequency p. The generalisation to spatially 
inhomogeneous media is rather laborious but, again, straightforward. With these 
assumptions expression (13) can be worked out and as a result it is found that 

We also restrict ourselves to the following class of non-linear wave equations: 

for some kernel K .  The dispersion relation of the linearised version of this equation 
can be found by taking 

u(x, t )  = exp[i( px -Rt ) ]  (39) 

then we find 

So R is equal to - i ( 2 ~ ) " ~  times the Fourier transform of the kernel K. Finally we 
assume that K ( 5 )  becomes zero fast enough for 1(1-,co in order to ensure that R ( p )  
is an entire function of p so that R can be expanded in a Taylor series that is convergent 
in the whole complex p plane. So 
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where aj and pj are real valued and 

Local moments with respect to the variable p can now be obtained by multiplying 
equation (37) by p" with integer n and then integrating from p = --CO to p = +W. For 
that purpose we have to make use of the following formulae: 

or 

=O for I >  n 

provided that 

a"-' w 
lim p " - -  -0  

p + * x  apfl-' f o r n = 1 , 2  , . . . ,  1. 

(43) 

(44) 

For 1 s n we have 

[u(x+x ' ,  t)u*(x-x' ,  t ) ]  p"- 'W dp = (2i)'-" lim - a"-' 
x'+O ax'"-' 

+X 

= (2i)'-"D:-'u(x, t )  u*(x, 1 )  (45) 

where D, is Hirota's bilinear operator that is defined on ordered pairs of functions 
a ( x )  and T(X) as follows: 

a" 
€ + o  a& D:a.  T = lim, [ a ( x +  E ) T ( X -  E ) ]  

Thus the moments of (37) are found to be given by 

a'"',!., 
m = O  2m axZm 

- 2  Ey2'  ( ) - Dn-2m 
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where n = 0, , 2 , .  . . , and E ( x )  = s for s S x < s + 1 (s is an integer). D, is defined by 

D, = DIU * U * .  ( 4 8 )  

The second t.rm on the right-hand side of ( 4 7 )  has to be interpreted as zero for n = 0. 
If the wave equation is linearised (L, = Li = 0) and if w = &( p ) ( Q  = 0) then the 

result ( 4 7 )  represents an infinite sequence of conservation laws of the form 

a ~ ,  ax, 
at  ax 

-+-=o ( 4 9 )  

where T,, the conserved density, and - X n ,  the flux of T,, are functionals of U that 
are given by 

T, = D, 

For the non-linear wave equations considered in § 2 we shall work out the balance 
equations in more detail. 

3.1. The non-linear Schrodinger equation 

n = R, = p 2  

L = iLi = +ilul 2 

so the infinite sequence of balance equations ( 4 7 )  is now given by 

1 a 3 ~ ,  
3 !  ax 

D,-' + n ( n  - 1)( n - 2 )  - 7 D, -3 -- 
a t  ax 

1 a 5 0 0  
5 !  ax5 

+ n ( n - l ) ( n - 2 ) ( n - 3 ) ( n - 4 ) -  - Dn-5 

?Do)  forn  odd 

for n even 

+ ... + 

As is well known the non-linear Schrodinger equation is completely integrable 
(Zakharov and Shabat 1972) and possesses an infinite sequence of so-called (Miura 
er a1 1968) constants of local conservation type of the form 

+X 

cn = I_, Tn (x, 2 )  dx ( 5 3 )  
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where T,(x ,  t )  is a polynomial conserved density and 

-- - 0. d c, 
dt  

( 5 4 )  

These constants C, can be constructed straightforwardly from ( 5 2 )  and the first five 
of them are thus found to be 

+X +oc 

C O = /  Dodx  Cl={  D , d x  
--5 -T 

+X +cc 

c2= 1 ( 0 , 1 2 0 i )  dx C3= I (D3*6DoDI)  dx ( 5 5 )  
--uc -X 

where subscripts denote partial differentiation. The first three integrals have their usual 
physical meaning; CO, C,  and C, are associated, apart from coefficients, with, respec- 
tively, the number of particles, the momentum and the energy. 

The described technique for finding the invariants C, is not only applicable to the 
standard non-linear Schrodinger equation with cubic non-linearity but also, for 
example, to a Schrodinger equation with a non-linearity of the type given by expression 
(20) (however, not with a non-linearity of the type given by expression (21)). In  order 
to demonstrate this we have recalculated the first five constants C, for the following 
generalised non-linear Schrodinger equation: 

As a result it is found that 

+X +X 

c0= J Dodx  C l = ]  D , d x  

C2= (D2+2aDi+2PD~,)  dx 

--a) -cc 

+T 

f X  

C3 = (0, + 6aDoDI -6pDo,,Dl) dx 
--Lc 

+X 

C, = ( D,+8aDoD2+4aD~+ 8cr2Di -4aD:, - 36apDiD0,, 
--cc 

( 5 7 )  

Although with the inclusion of even higher derivatives of even order in (56) the 
construction o f  the successive constants C, is still straightforward, the calculations 
become rather laborious, which is the reason for the inclusion of only a second-order 
derivative in the example (56). 
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3.2. The generalised Korteweg-de Vries equation 
n=f l  = - p 3  

* 1  a ( U q + l )  

q + l  ax 
L = L  =-- 

where q = 0 , 1 , 2 ,  . . . . Since now U is assumed to be real valued, D, is identically zero 
for n odd. So the infinite sequence of balance equations (47) now becomes 

1 a3(uq+ ' )  
4 ( n - 1 ) - DZn + 2 n ( 2 n  - 1 )  - ~ 

It- aD2, 3 aD2(n+l)+ 1 a 3 q n  +- ~ 

a t  4 ax 4 ax3 q + i  2 !  ax3 

1 a 5 ( U q + ' )  

4! ax5 +2n(2n - 1 ) ( 2 n  - 2 ) ( 2 n  - 3 )  - ~ 4 ( n - 3 ) 

The generalised Korteweg-de Vries equation is known to be completely integrable for 
q = 0 and q = 1 .  A straightforward construction of the successive constants of local 
conservation type for these values of q from ( 5 9 )  now, however, seems to be impossible 
or at least as difficult as a derivation directly from the Korteweg-de Vries equation itself. 

3.3. The Burgers equation 
= ini = -ip2 

Again D, is identically zero for n odd because U is assumed to be real valued. Hence 
the balance equations are given by 

1 a5u 

4! ax 
+ 2 n ( 2 n  - 1 ) ( 2 n  - 2 ) ( 2 n  - 3 )  - 7 D 2 ( n - 2 j + .  . . 

There are now no constants of local conservation type to be calculated. 

4. Conclusions 

We have described the generalisation of the concept of local frequency spectra to a 
class of non-linear wave equations that can be described by some local dispersion 
relation that depends upon the wavefield itself. This class includes such well known 
equations as the non-linear Schrodinger equation, the (modified) Korteweg-de Vries 
equation and the Burgers equation, but not an equation like the sine-Gordon equation. 
Furthermore the transport equations that govern these local frequency spectra have 
been constructed and worked out in more detail for the case in which the wave-field 
dependence of the dispersion relation can be separated from the dispersion relation 
of the linearised equation. 
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By taking local moments of the transport equation with respect to the frequency 
variable, an infinite sequence of balance equations can be derived. This infinite 
sequence of balance equations is in principle identical with the original wave equation. 
For non-linear wave equations that belong to the above-mentioned class and of which 
the dispersion relation of the linearised version is an entire function of the complex 
wavevector, the balance equations have been calculated explicitly. 

It turned out that for the non-linear Schrodinger equation the successive conserva- 
tion laws could be constructed straightforwardly from the balance equations in terms 
of Hirota derivatives. The reason that this conversion of the balance equation into 
conserved densities that are expressible in terms of Hirota derivatives is possible for 
the non-linear Schrodinger equation whereas this seems to be impossible for the other 
equations is unclear and should be investigated. 

There are some other interesting applications of local frequency spectra with respect 
to non-linear wave phenomena. One aspect has already been mentioned in 8 2.1, 
namely the study of the modulational instability of a uniform wavetrain of which the 
envelope is governed by a generalised non-linear Schrodinger equation. Also the 
long-time behaviour can thus be investigated. 

Since the concept is also applicable to wave phenomena in more than one spatial 
dimension, it is interesting to study the transport equations, the balance equations and 
their possible conversion into conservation laws for multi-dimensional non-linear wave 
phenomena. 

Finally it should be interesting to investigate the possibility of generalising the 
concept of local frequency spectra to discrete non-linear wave equations such as, for 
example, the non-linear lattice equations. 
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